RSS

สับเซต และเพาเวอร์เซต

28 ก.พ.
สับเซต
บทนิยาม เซต A เป็นสับเซตของเซต B ก็ต่อเมื่อ สมาชิกทุกตัวของเซต A เป็นสมาชิกของเซต B และสามารถเขียนแทนได้ด้วยสัญลักษณ์ A ⊂B
ตัวอย่างที่ 1 A = {1, 2, 3}
  B = { 1, 2, 3, 4, 5}
  A ⊂ B
ตัวอย่างที่ 2 C = { x | x เป็นจำนวนเต็มบวก } = {1,2,3,…}
  D = { x | x เป็นจำนวนคี่ } = {…,-3,-1,1,3,…}
  C D
ตัวอย่างที่ 3 E = { 0,1,2 }
  F = { 2,1,0 }
  E ⊂ F และ F ⊂ E
จากตัวอย่างที่ 3 จะเห็นว่า E ⊂ F และ F ⊂ E แล้ว E = F
สับเซตแท้ เซต A จะเป็นสับเซตแท้ของเซต B ก็ต่อเมื่อ A ⊂ B และ A ≠ B
จำนวนสับเซต ถ้า A เป็นเซตที่มีสมาชิก n สมาชิกแล้ว จำนวนสับเซตของเซต A จะมี 2n เซต และในจำนวนนี้เป็นสับเซตแท้ 2n – 1 เซต

 

เพาเวอร์เซต
บทนิยาม เพาเวอร์เซตของเซต A คือ เซตซึ่งประกอบด้วยสมาชิกที่เป็นสับเซตทั้งหมดของเซต A และสามารถเขียนแทนได้ด้วยสัญลักษณ์ P(A)
ตัวอย่างที่ 1 A = Ø
  สับเซตทั้งหมดของ A คือ Ø
  P(A) = {Ø }
ตัวอย่างที่ 2 B = {1}
  สับเซตทั้งหมดของ B คือ Ø, {1}
  P(B) = {Ø, {1} }
ตัวอย่างที่ 3 C = {1,2}
  สับเซตทั้งหมดของ C คือ Ø, {1} , {2}, {1,2}
  P(C) ={Ø, {1} , {2}, {1,2} }

 

 

 
ใส่ความเห็น

Posted by บน กุมภาพันธ์ 28, 2012 in Uncategorized

 

ใส่ความเห็น

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / เปลี่ยนแปลง )

Twitter picture

You are commenting using your Twitter account. Log Out / เปลี่ยนแปลง )

Facebook photo

You are commenting using your Facebook account. Log Out / เปลี่ยนแปลง )

Google+ photo

You are commenting using your Google+ account. Log Out / เปลี่ยนแปลง )

Connecting to %s

 
%d bloggers like this: